Maple syrup is a sweet syrup made from the sap of maple trees. In cold climates these trees store starch in their trunks and roots before winter; the starch is then converted to sugar that rises in the sap in late winter and early spring. Maple trees are tapped by drilling holes into their trunks and collecting the sap, which is heated to evaporate much of the water, leaving the concentrated syrup.
Maple syrup was first made by the Indigenous people of Northeastern North America. The practice was adopted by European settlers, who gradually changed production methods. Technological improvements in the 1970s further refined syrup processing. Almost all of the world's maple syrup is produced in Canada and the United States.
Maple syrup is graded based on its colour and taste. Sucrose is the most prevalent sugar in maple syrup. In Canada syrups must be made exclusively from maple sap to qualify as maple syrup and must also be at least 66 per cent sugar. In the United States a syrup must be made almost entirely from maple sap to be labelled as "maple", though states such as Vermont and New York have more restrictive definitions.
Maple syrup is often used as a condiment for , , French toast, oatmeal or porridge. It is also used as an ingredient in baking and as a sweetener or flavouring agent.
A few other species of maple are also sometimes used as sources of sap for producing maple syrup, including the Acer negundo, the Acer saccharinum, and the bigleaf maple ( A. macrophyllum). In the Southeastern United States Florida sugar maple ( Acer floridanum) is occasionally used for maple syrup production.
Similar syrups may also be produced from walnut, birch syrup, or palm syrup trees, among other sources.
The Algonquians recognized maple sap as a source of energy and nutrition. At the beginning of the spring thaw, they made V-shaped incisions in tree trunks; they then inserted reeds or concave pieces of bark to run the sap into clay buckets or tightly woven birch-bark baskets. The maple sap was concentrated first by leaving it exposed to the low temperatures overnight and disposing of the layer of ice that formed on top. Following that, the sap was transported by sled to large fires where it was boiled in clay pots to produce maple syrup. Often, multiple pots were used in conjunction, with the liquid being transferred between them as it grew more concentrated. Contrary to popular belief, syrup was not typically produced by dropping heated stones into wooden bowls, especially in northeast North America where Indigenous cultures had been using clay pots for thousands of years. However, modern and historic sources contain evidence that hot stones may have occasionally been used in the upper Midwest and Canada, where hollowed out logs and birchbark containers typically replaced clay pots.
Maple sugaring parties typically began to operate at the start of the spring thaw in regions of woodland with sufficiently large numbers of maples. Syrup makers first bored holes in the trunks, usually more than one hole per large tree; they then inserted wooden spouts into the holes and hung a wooden bucket from the protruding end of each spout to collect the sap. The buckets were commonly made by cutting cylindrical segments from a large tree trunk and then hollowing out each segment's core from one end of the cylinder, creating a seamless, watertight container. Sap filled the buckets, and was then either transferred to larger holding vessels (barrels, large pots, or hollowed-out wooden logs), often mounted on sledges or wagons pulled by , or carried in buckets or other convenient containers. The sap-collection buckets were returned to the spouts mounted on the trees, and the process was repeated for as long as the flow of sap remained "sweet". The specific weather conditions of the thaw period were, and still are, critical in determining the length of the sugaring season. As the weather continues to warm, a maple tree's normal early spring biological process eventually alters the taste of the sap, making it unpalatable, perhaps due to an increase in amino acids.
The boiling process was very time-consuming. The harvested sap was transported back to the party's base camp, where it was then poured into large vessels (usually made from metal) and boiled down to achieve the desired concentration. The sap was usually transported using large barrels pulled by horses or oxen to a central collection point, where it was processed either over a fire built out in the open or inside a shelter built for that purpose (the "sugar shack").
Buckets began to be replaced with plastic bags, which allowed people to see at a distance how much sap had been collected. Syrup producers also began using tractors to haul vats of sap from the trees being tapped (the sugar bush) to the evaporator. Some producers adopted motor-powered tappers and metal tubing systems to convey sap from the tree to a central collection container, but these techniques were not widely used. Heating methods also diversified: modern producers use wood, oil, natural gas, propane, or steam to evaporate sap. Modern filtration methods were perfected to prevent contamination of the syrup. A large number of technological changes took place during the 1970s. Plastic tubing systems that had been experimental since the early part of the century were perfected, allowing sap to flow directly from the tree to the evaporator house. were added to the tubing systems, and preheaters were developed to recycle heat lost in the steam. Producers developed reverse-osmosis machines to take a portion of water out of the sap before it was boiled, increasing processing efficiency.
Improvements in tubing and vacuum pumps, new filtering techniques, "supercharged" preheaters, and better storage containers have since been developed. Research continues on pest control and improved woodlot management. In 2009 researchers at the University of Vermont unveiled a new type of tap that prevents backflow of sap into the tree, reducing bacterial contamination and preventing the tree from attempting to heal the bore hole. Experiments show that it may be possible to use saplings in a plantation instead of mature trees, dramatically boosting productivity per acre. As a result of the smaller tree diameter, milder diurnal temperature swings are needed for the tree to freeze and thaw, which enables sap production in milder climatic conditions outside of northeastern North America.
Boiling the syrup is a tightly controlled process, which ensures appropriate sugar content. Syrup boiled too long will eventually crystallize, whereas under-boiled syrup will be watery, and will quickly spoil. The finished syrup has a density of 66° on the Brix scale (a hydrometer scale used to measure sugar solutions). The syrup is then filtered to remove precipitated "sugar sand", crystals made up largely of sugar and calcium malate. These crystals are not toxic, but create a "gritty" texture in the syrup if not filtered out.
In addition to open pan evaporation methods, many large producers use the more fuel efficient reverse osmosis procedure to separate the water from the sap. Smaller producers can also use batchwise recirculating reverse osmosis, with the most energy-efficient operation taking the sugar concentration to 25% prior to boiling.
The higher the sugar content of the sap, the smaller the volume of sap is needed to obtain the same amount of syrup. To yield 1 unit of syrup, sap at 1.5 per cent sugar content will require 57 units, while sap at 3.5 per cent sugar content only needs 25 units of sap. The sap's sugar content is highly variable and will fluctuate even within the same tree.
The filtered syrup is graded and packaged while still hot, usually at a temperature of or greater. The containers are turned over after being sealed to sterilize the cap with the hot syrup. Packages can be made of metal, glass, or coated plastic, depending on volume and target market. The syrup can also be heated longer and further processed to create a variety of other maple products, including maple sugar, maple butter, and maple taffy.
A maple syrup production farm is called a "sugar bush". Sap is often boiled in a "sugar shack" (also known as a "sugar house", "sugar cabin", "sugar shanty", or cabane à sucre), a building louvred at the top to vent the steam from the boiling sap.
Maples are usually tapped beginning at 30 to 40 years of age. Each tree can support between one and three taps, depending on its trunk diameter. The average maple tree will produce of sap per season, up to per day. This is roughly equal to seven per cent of its total sap. Tap seasons typically happen during late winter and spring and usually last for four to eight weeks, though the exact dates depend on the weather, location, and climate.
During the day, sucrose stored in the roots for the winter rises through the trunk as sugary sap. A hole is bored into the trunk of the tree to allow the sap to flow out of a spile that is tapped in the hole. The taps are left in place for the season, and the sap flows during the day when the temperature is above freezing. Some producers also tap in autumn, though this practice is less common than spring tapping. Maples can continue to be tapped for sap until they are over 100 years old.
Climate change is dramatically impacting the production of maple syrup. Increased temperatures in late winter/early spring causes the season for maple sap collection to shift earlier in the year, with increased summer temperatures causing a decrease in sugar content in sap, and drought/heavy rainfall impacting forest ecosystems.
, Quebec accounts for 91.6 per cent of maple syrup produced in Canada, followed by New Brunswick at 4.7 per cent and Ontario at 3.4 per cent. However, 96.8 per cent of exported Canadian maple syrup originated from Quebec, whereas 2.6 per cent of exported syrup originated from New Brunswick, and the remaining 0.6 per cent from all other provinces. Ontario holds the most maple syrup farms in Canada outside of Quebec, with 389 maple syrup producers in 2021. This is followed by New Brunswick, with 114 producers; and Nova Scotia, with 39 producers.
As of 2016, Quebec had some 7,300 producers working with 13,500 farmers, collectively making over of syrup. Production in Quebec is controlled through a supply management system, with producers receiving quota allotments from the government sanctioned Quebec Maple Syrup Producers (QMSP; ), which also maintains reserves of syrup, although there is a black-market trade in Quebec product. In 2017 the QMSP mandated increased output of maple syrup production, attempting to establish Quebec's dominance in the world market.
The Canadian provinces of Manitoba and Saskatchewan produce maple syrup using the sap of the Acer negundo. In 2011 there were 67 maple syrup producers in Manitoba and 24 in Saskatchewan. A Manitoba maple tree's yield is usually less than half that of a similar sugar maple tree. Manitoba maple syrup has a slightly different flavour from sugar-maple syrup, because it contains less sugar and the tree's sap flows more slowly. British Columbia is home to a growing maple sugar industry using sap from the bigleaf maple, which is native to the West Coast of the United States and Canada. In 2011 there were 82 maple syrup producers in British Columbia.
Vermont has long been the largest US producer, with a record produced in 2022. In 2019 it led with over , followed by New York with and Maine with . Wisconsin, Ohio, New Hampshire, Michigan, Pennsylvania, Massachusetts and Connecticut all produced marketable quantities of maple syrup.
Maple syrup has been produced on a small scale in some other countries, notably Japan and South Korea. However, in South Korea in particular, it is traditional to consume maple sap, called gorosoe, instead of processing it into syrup.
As of 31 December 2014, the CFIA and as of 2 March 2015, the United States Department of Agriculture (USDA) Agricultural Marketing Service issued revised standards intended to harmonize Canadian and United States regulations on the classification of maple syrup as follows:
As long as maple syrup does not have an off-flavour, is of a uniform colour, and is free from turbidity and sediment, it can be labelled as one of the A grades. If it exhibits any problems, it does not meet Grade A requirements, and then must be labelled as "processing grade" maple syrup and may not be sold in containers smaller than . If maple syrup does not meet the requirements of processing-grade maple syrup (including a fairly characteristic maple taste), it is classified as substandard.
This grading system was accepted and made law by most maple-producing states and provinces, and became compulsory in Canada as of 13 December 2016. Vermont, in an effort to "jump-start" the new grading regulations, adopted the new grading system as of 1 January 2014, after the grade changes passed the US Senate and House in 2013. Maine passed a bill to take effect as soon as both Canada and the United States adopted the new grades. In New York the new grade changes became law on 1 January 2015. New Hampshire did not require legislative approval and so the new grade laws became effective as of 16 December 2014, and producer compliance was required as of 1 January 2016.
Golden and amber grades typically have a milder flavour than dark and very dark, which are both dark and have an intense maple flavour. The darker grades of syrup are used primarily for cooking and baking, although some specialty dark syrups are produced for table use. Syrup harvested earlier in the season tends to yield a lighter colour. With the new grading system, the classification of maple syrup depends ultimately on its internal transmittance at 560nm wavelength through a 10mm sample. Golden must have 75 per cent or more transmittance, amber must have 50.0 to 74.9 per cent transmittance, dark must have 25.0 to 49.9 per cent transmittance, and very dark is any product having less than 25.0 per cent transmittance.
Producers in Ontario or Quebec may have followed either federal or provincial grading guidelines. Quebec's and Ontario's guidelines differed slightly from the federal:
A typical year's yield for a maple syrup producer will be about 25 to 30 per cent of each of the #1 colours, 10 per cent #2 amber, and 2 per cent #3 dark.
The United States used different grading standards – some states still do as they await state regulation. Maple syrup was divided into two major grades:
In Massachusetts the Grade B was renamed "Grade A Very Dark, Strong Taste"
The Vermont Agency of Agriculture Food and Markets used a similar grading system of colour, and is roughly equivalent, especially for lighter syrups, but using letters: "AA", "A", etc. The Vermont grading system differed from the US system in maintaining a slightly higher standard of product density (measured on the Baumé scale). New Hampshire maintained a similar standard, but not a separate state grading scale. The Vermont-graded product had 0.9 per cent more sugar and less water in its composition than US-graded. One grade of syrup not for table use, called commercial or Grade C, was also produced under the Vermont system.
As stated in the maple products regulations, Canadian maple syrup can be classified as "Canadian Food grading" and "Canadian Processing Grade". Any maple syrup container under these classifications should be filled to at least 90% of the bottle size while still containing the net quantity of syrup product as stated on the label. Every container of maple syrup must be new if it has a capacity of 5 litres or less or is marked with a grade name. Every container of maple sugar must also be new if it has a capacity of less than 5kg or is either exported out of Canada or conveyed from one province to another.
Each maple syrup product must be verified clean if it follows a grade name or if it is exported out of the province in which it was originally manufactured.
In a 100g amount maple syrup provides 260 and is composed of 32 per cent water by weight, 67 per cent Carbohydrate (90 per cent of which are sugars), and no appreciable protein or fat (table). Maple syrup is generally low in overall micronutrient content, although manganese and riboflavin are at high levels along with moderate amounts of zinc and calcium (right table). It also contains trace amounts of which increase in content as sap flow occurs.
Maple syrup contains a wide variety of and volatile organic compounds, including vanillin, hydroxybutanone, , propionaldehyde, and numerous . It is not yet known exactly all compounds responsible for the distinctive flavour of maple syrup, although primary flavour-contributing compounds are maple furanone (5-ethyl-3-hydroxy-4-methyl-2(5H)-furanone), Furaneol, and maltol. New compounds have been identified in maple syrup, one of which is quebecol, a compound created when the maple sap is boiled to create syrup. Its sweetness derives from a high content of sucrose (99% of total sugars). Its brown colour – a significant factor in the appeal and quality grading of maple syrup – develops during thermal evaporation.
One author described maple syrup as "a unique ingredient, smooth- and silky-textured, with a sweet, distinctive flavourhints of caramel with overtones of toffee will not doand a rare colour, amber set alight. Maple flavour is, well, maple flavour, uniquely different from any other." Agriculture Canada has developed a "flavour wheel" that details 91 unique flavours that can be present in maple syrup. These flavours are divided into 13 families: vanilla, burnt, milky, fruity, floral, spicy, foreign (deterioration or fermentation), foreign (environment), maple, confectionery, plant (herbaceous), plant (forest, humus or cereals), and plant (ligneous). These flavours are evaluated using a procedure similar to wine tasting. Other culinary experts praise its unique flavour. Environmental factors, including weather and soil type, impact flavor.
Maple syrup and its various artificial imitations are widely used as toppings for , , and French toast in North America. They can also be used to flavour a variety of foods, including , ice cream, porridge, fresh fruit, bacon, and sausages. It is also used as sweetener for granola, applesauce, baked beans, candied , winter squash, cakes, pies, breads, tea, coffee, and hot toddy.
Table syrup, also known as pancake syrup and waffle syrup, is often used as a substitute for maple syrup. Table syrups are mostly made using corn syrup and high-fructose corn syrup, giving them a less complex and more artificial flavour compared to maple syrup. In the United States consumers generally prefer imitation syrups, likely because of the significantly lower cost and sweeter flavour; they typically cost about , whereas authentic maple syrup costs as of 2015.
In 2016 maple syrup producers from nine US states petitioned the Food and Drug Administration (FDA) to regulate labelling of products containing maple syrup or using the word "maple" in manufactured products, indicating that imitation maple products contained insignificant amounts of natural maple syrup. In September 2016 the FDA published a consumer advisory to carefully inspect the ingredient list of products labelled as "maple".
Maple syrup and maple sugar were used during the American Civil War and by abolitionists in the years before the war because most cane sugar and molasses were produced by Southern slaves. Because of food rationing during the Second World War, people in the northeastern United States were encouraged to stretch their sugar rations by sweetening foods with maple syrup and maple sugar, and recipe books were printed to help housewives employ this alternative source.
Off-flavours
Production
Commerce
Markings
Grades
Old grading system
Packing regulations
Nutrition
Imitations
Cultural significance
See also
Cited works
Further reading
External links
|
|